

General Certificate of Education
Advanced Level Examination
January 2010

Mathematics

MPC4

Unit Pure Core 4

Tuesday 19 January 2010 9.00 am to 10.30 am

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed

- 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MPC4.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 The polynomial $\mathrm{f}(x)$ is defined by $\mathrm{f}(x)=15 x^{3}+19 x^{2}-4$.
(a) (i) Find $f(-1)$.
(1 mark)
(ii) Show that $(5 x-2)$ is a factor of $\mathrm{f}(x)$.
(b) Simplify

$$
\frac{15 x^{2}-6 x}{\mathrm{f}(x)}
$$

giving your answer in a fully factorised form.

2 (a) Express $\cos x+3 \sin x$ in the form $R \cos (x-\alpha)$, where $R>0$ and $0<\alpha<\frac{\pi}{2}$. Give your value of α, in radians, to three decimal places.
(b) (i) Hence write down the minimum value of $\cos x+3 \sin x$.
(ii) Find the value of x in the interval $0 \leqslant x \leqslant 2 \pi$ at which this minimum occurs, giving your answer, in radians, to three decimal places.
(c) Solve the equation $\cos x+3 \sin x=2$ in the interval $0 \leqslant x \leqslant 2 \pi$, giving all solutions, in radians, to three decimal places.

3 (a) (i) Find the binomial expansion of $(1+x)^{-\frac{1}{3}}$ up to and including the term in x^{2}.
(2 marks)
(ii) Hence find the binomial expansion of $\left(1+\frac{3}{4} x\right)^{-\frac{1}{3}}$ up to and including the term in x^{2}.
(b) Hence show that $\sqrt[3]{\frac{256}{4+3 x}} \approx a+b x+c x^{2}$ for small values of x, stating the values of the constants a, b and c.

4 The expression $\frac{10 x^{2}+8}{(x+1)(5 x-1)}$ can be written in the form $2+\frac{A}{x+1}+\frac{B}{5 x-1}$, where A and B are constants.
(a) Find the values of A and B.
(b) Hence find $\int \frac{10 x^{2}+8}{(x+1)(5 x-1)} \mathrm{d} x$.

5 A curve is defined by the equation

$$
x^{2}+x y=\mathrm{e}^{y}
$$

Find the gradient at the point $(-1,0)$ on this curve.

6 (a) (i) Express $\sin 2 \theta$ and $\cos 2 \theta$ in terms of $\sin \theta$ and $\cos \theta$.
(ii) Given that $0<\theta<\frac{\pi}{2}$ and $\cos \theta=\frac{3}{5}$, show that $\sin 2 \theta=\frac{24}{25}$ and find the value of $\cos 2 \theta$.
(2 marks)
(b) A curve has parametric equations

$$
x=3 \sin 2 \theta, \quad y=4 \cos 2 \theta
$$

(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of θ.
(ii) At the point P on the curve, $\cos \theta=\frac{3}{5}$ and $0<\theta<\frac{\pi}{2}$. Find an equation of the tangent to the curve at the point P.

7 Solve the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{y} \cos \left(\frac{x}{3}\right)$, given that $y=1$ when $x=\frac{\pi}{2}$.
Write your answer in the form $y^{2}=\mathrm{f}(x)$.

8 The points A, B and C have coordinates $(2,-1,-5),(0,5,-9)$ and $(9,2,3)$ respectively.

The line l has equation $\mathbf{r}=\left[\begin{array}{r}2 \\ -1 \\ -5\end{array}\right]+\lambda\left[\begin{array}{r}1 \\ -3 \\ 2\end{array}\right]$.
(a) Verify that the point B lies on the line l.
(b) Find the vector $\overrightarrow{B C}$.
(c) The point D is such that $\overrightarrow{A D}=2 \overrightarrow{B C}$.
(i) Show that D has coordinates $(20,-7,19)$.
(ii) The point P lies on l where $\lambda=p$. The line $P D$ is perpendicular to l. Find the value of p.

9 A botanist is investigating the rate of growth of a certain species of toadstool. She observes that a particular toadstool of this type has a height of 57 millimetres at a time 12 hours after it begins to grow.

She proposes the model $h=A\left(1-\mathrm{e}^{-\frac{1}{4} t}\right)$, where A is a constant, for the height h millimetres of the toadstool, t hours after it begins to grow.
(a) Use this model to:
(i) find the height of the toadstool when $t=0$;
(ii) show that $A=60$, correct to two significant figures.
(b) Use the model $h=60\left(1-\mathrm{e}^{-\frac{1}{4} t}\right)$ to:
(i) show that the time T hours for the toadstool to grow to a height of 48 millimetres is given by

$$
T=a \ln b
$$

where a and b are integers;
(ii) show that $\frac{\mathrm{d} h}{\mathrm{~d} t}=15-\frac{h}{4}$;
(iii) find the height of the toadstool when it is growing at a rate of 13 millimetres per hour.

END OF QUESTIONS

